Copied to
clipboard

G = S32×D5order 360 = 23·32·5

Direct product of S3, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32×D5, D151D6, (S3×D15)⋊C2, (C3×C15)⋊C23, C3⋊S31D10, (C3×D5)⋊1D6, (C5×S3)⋊1D6, C3⋊D15⋊C22, D15⋊S33C2, (C3×S3)⋊1D10, (S3×C15)⋊C22, (C3×D15)⋊C22, C151(C22×S3), (C32×D5)⋊C22, C321(C22×D5), C51(C2×S32), (C3×S3×D5)⋊C2, (D5×C3⋊S3)⋊C2, C31(C2×S3×D5), (C5×S32)⋊1C2, (C5×C3⋊S3)⋊C22, SmallGroup(360,137)

Series: Derived Chief Lower central Upper central

C1C3×C15 — S32×D5
C1C5C15C3×C15C32×D5C3×S3×D5 — S32×D5
C3×C15 — S32×D5
C1

Generators and relations for S32×D5
 G = < a,b,c,d,e,f | a3=b2=c3=d2=e5=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 996 in 138 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C3, C3, C22, C5, S3, S3, C6, C23, C32, D5, D5, C10, D6, C2×C6, C15, C15, C3×S3, C3×S3, C3⋊S3, C3⋊S3, C3×C6, D10, C2×C10, C22×S3, C5×S3, C5×S3, C3×D5, C3×D5, D15, D15, C30, S32, S32, S3×C6, C2×C3⋊S3, C22×D5, C3×C15, S3×D5, S3×D5, C6×D5, S3×C10, D30, C2×S32, C32×D5, S3×C15, C3×D15, C5×C3⋊S3, C3⋊D15, C2×S3×D5, C3×S3×D5, D5×C3⋊S3, C5×S32, S3×D15, D15⋊S3, S32×D5
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, C22×S3, S32, C22×D5, S3×D5, C2×S32, C2×S3×D5, S32×D5

Permutation representations of S32×D5
On 30 points - transitive group 30T84
Generators in S30
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)

G:=sub<Sym(30)| (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)>;

G:=Group( (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29) );

G=PermutationGroup([[(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)]])

G:=TransitiveGroup(30,84);

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F15A15B15C15D15E15F30A30B30C30D
order1222222233355666666610101010101015151515151530303030
size13359151545224226610102030306666181844448812121212

36 irreducible representations

dim111111222222244448
type++++++++++++++++++
imageC1C2C2C2C2C2S3D5D6D6D6D10D10S32S3×D5C2×S32C2×S3×D5S32×D5
kernelS32×D5C3×S3×D5D5×C3⋊S3C5×S32S3×D15D15⋊S3S3×D5S32C5×S3C3×D5D15C3×S3C3⋊S3D5S3C5C3C1
# reps121121222224214142

Matrix representation of S32×D5 in GL6(𝔽31)

100000
010000
001000
000100
0000301
0000300
,
100000
010000
0030000
0003000
000001
000010
,
100000
010000
0030100
0030000
000010
000001
,
3000000
0300000
0003000
0030000
000010
000001
,
1310000
17300000
001000
000100
000010
000001
,
110000
0300000
0030000
0003000
000010
000001

G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,30,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,17,0,0,0,0,1,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S32×D5 in GAP, Magma, Sage, TeX

S_3^2\times D_5
% in TeX

G:=Group("S3^2xD5");
// GroupNames label

G:=SmallGroup(360,137);
// by ID

G=gap.SmallGroup(360,137);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,111,730,10373]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^5=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽